

Massively Parallel Two-Dimensional TLM Algorithm on
Graphics Processing Units

Filippo V. Rossi1, Poman P.M. So1, Nikolaus Fichtner2 and Peter Russer 2

1 Dept. ECE, University of Victoria, Victoria, British Columbia, Canada
2 Institute for High Frequency Engineering, Technische Universität München, München, Germany

Abstract — Recent advances in computing technology has

brought massively parallel computing power to desktop PCs. As
multi-core processor technology becomes mature, a new front in
parallel technology based on graphics processors has emerged. A
massively parallel 2D-TLM algorithm for NVIDIA advanced
graphics processors has been developed. The proposed parallel
computing paradigm can be adopted straightforwardly to accelerate
time-domain electromagnetic field modeling programs.

Index Terms — Time Domain Computational Electromagnetics,
Parallel Algorithms, Stream Computing, FDTD, TLM, GPU, SIMD.

I. INTRODUCTION

Graphics processing unit (GPU) based parallel computing has
been an important topic for the computing industry for a
number of years. Macedonia addressed this topic in a
computing magazine article in 2003 [1]. Most of the papers
on GPU computing are related to signal and image processing
[2 – 6]. Krakiwsky et al. applied the technique to accelerate
the FDTD algorithm [7]. Takizawa et al. applied GPU
computing to heat transfer simulation [8]. Z. Luo et al. and
Harding et al. applied the paradigm to artificial neural network
[9] and genetic algorithm [10], respectively. Hence, it is quite
clear that parallel algorithms can be executed efficiently on
GPUs. Furthermore, a cluster of GPU based computers can be
created to execute grand challenge problems [11]. Researchers
at Stanford [12] have been using this technique for years in
protein folding computation. However, general adaptation of
GPU processing for scientific computing, and hence in
computational electromagnetics as well, has been quite slow
due to the lack of a good software development library.

II. THE GRAPHICS PROCESSING UNIT (GPU)

The latest GPUs from NVIDIA are based on an innovative
compute unified device architecture (CUDA) interface. The
CUDA SDK enables programs to be developed with the
SIMD paradigm using a high level programming language
such as C or C++. The NVIDIA GeForce 8800 GTX GPU
used in this project consists of 16 multiprocessors with 8
processors each for a total of 128 processors with 768 MB of
GDDR3 global memory. Each multiprocessor contains 16k of
on-chip shared memory which is much faster than global
memory. There is 64k of constant cache which is used to pass
instruction parameters. The single instruction multiple data
(SIMD) programming model supported by the GPU is a very
good software paradigm for implementing parallel FDTD and
TLM algorithms.

III. MASSIVELY PARALLEL TLM ALGORITHM

This paper reports, for the first time, a massively parallel
GPU based TLM algorithm for NVIDIA CUDA enabled
GPUs. With even an entry-level GeForce 8800 GTX Ultra,
the new program has achieved more than 10 times
acceleration in speed when compare to an equivalent serial
version running on a top-end DELL 690 workstation.

Fig. 1 depicts the schematic of our implementation. A TLM
mesh, [13], on the host CPU is mapped to the GPU memory
according to the CUDA SDK requirement, [14]. The CPU
transfers its mesh data to the GPU global memory where a
kernel function is executed in parallel on all 16
multiprocessors. The 16 multiprocessors partitions and
transfers data from the global memory to their local shared
memory before processing the TLM procedures in parallel,
fig. 2a. It is important to note that the copy and write
commands for transferring data between global and shared
memory take more than 90 percent of time per kernel
iteration. This is due to the fact that 400 – 600 clock cycles are
needed for each read or write operation for accessing the
global memory; this is very slow when compare to as low as 4
clock cycles for accessing on-chip memory. Hence, it is
important to eliminate unnecessary data transfer between the
two memory locations.

Thread synchronization is an important issue for SIMD
programming. Fig. 2a depicts three fundamental operations of
a TLM process, namely impulse scattering at nodes, impulse
reflection at boundaries, and impulse interchanges among
neighboring nodes. Within each multiprocessor, these three
operations can be synchronized easily by calling a sync
function at the end of each operation. Synchronization among
multiprocessors (thread blocks), on the other hand, must be
handled indirectly by algorithm specific logic. Fig. 3 depicts a
solution that has been implemented. Initially, a block of 16×16
nodes is copied from the global memory to the on-chip shared
memory labeled VS_1. Next scattering is executed on all 256
(or 16×16) nodes in VS_1 by the thread block. The results of
scattering remain in VS_1. Impulse interchange is processed
next and the result is store in VS_2. Boundary conditions are
handled in a similar manner. Note that in fig. 3 shared
memory, VS_2, is larger than VS_1 by one dimension in all
directions to accommodate the voltage data that crosses
boundaries. The footprint of writing the results of VS_2 to

978-1-4244-1780-3/08/$25.00 © 2008 IEEE 153
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 22, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

Fig. 1 The host-device relationship between a computer's CPU and

GPU. Also depicted is the memory model of the NVIDIA
GeForce 8800 GTX Ultra GPU used in this project.

Fig. 2 a) Synchronization of computation stages within a

thread block can be handled directly by a GPU sync
function. b) Synchronization among thread blocks must
be handled by other means.

Fig. 3 Parallel computational iteration by thread block.

Fig. 4, Process of Inter-block dependence immunity

978-1-4244-1780-3/08/$25.00 © 2008 IEEE 154
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 22, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

global memory is depicted in fig. 4. Only the voltage arms in
blue are written to global memory. Note that the voltage arms
that are just inside the boundaries of the block (grey) are not
written to global memory to allow interlacing. One important
advantage seen by this technique is that all blocks in a mesh
self-stitch, fig. 4. The overhead of this self-stitching ‘radiative
node method’ is light compared to post kernel stitching
approaches.

IV. RESULTS

The performance of the TLM GPU routine was measured by
timing the execution of increasingly larger mesh-node arrays
(figure 5). As a comparison the same measurements were
made for a serial CPU TLM routine and an OpenMP version
that utilized 4 CPUs. The results in figure 5 indicate that at a
lower number of nodes the performance of the parallel code
diminishes; this can be attributed to factors such as high
overhead-to-data density ratio for small mesh sizes. The
GPU, therefore, offers no benefit when the mesh is smaller
than a certain threshold. In this situation, the overhead in
invoking the GPU code is high enough to render the GPU
inefficient compared to the CPU.

As a second validation, the GPU-TLM code was used to
model a WR28 waveguide band-pass filter. The field
distribution, return loss and insertion loss of the filter are
shown in fig. 6. The filter was also implemented in an
OpenMP version of TLM code, and in MEFiSTo 2-D, [15].
Figure 7 shows a comparison of the performance results of
each simulation run for this filter. MEFiSTo was configured to
run using a single CPU as well as all 4 available CPUs on the
Dell 690 workstation.

Our first attempt to port the two-dimensional shunt TLM
algorithm to the GPU environment was very successful. It was
recognized, however, that further improvements to speed of

TLM CPU and GPU Performance

0

50

100

150

200

250

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000
Nodes

M
eg

a-
N

od
es

/s
ec

Serial TLM
OpenMP TLM
CUDA TLM

Fig. 5 Performance comparison between the traditional CPU

and GPU TLM algorithms.

Fig. 6 The field distribution, return loss and insertion loss of a
bandpass filter in a WR28 waveguide. The dimensions
of the inductive obstacles are 0.6465mm × 0.6465mm
and 0.6465mm × 1.9340mm. The spacing between the
obstacles are 5.172mm.

execution can be achieved by applying additional optimization
techniques, particularly contiguous memory organization.
We will employ the techniques learned during this project to
port the SCN TLM engine in Yatsim, [16, 17], to the NVIDIA
GPU platform as soon as possible.

V. CONCLUSIONS

We have successfully designed and implemented a
massively parallel 2D-TLM algorithm for the NIVIDIA
CUDA enabled GPU. It is found that the SIMD software
paradigm is very suitable for implementing time-domain
computational electromagnetic methods such as TLM and
FDTD. Our initial implementation has achieved more than 10
times improvement in speed.

978-1-4244-1780-3/08/$25.00 © 2008 IEEE 155
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 22, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

Fig. 7 Performance of various TLM implementations for a

bandpass filter in a WR28 waveguide.

Structurally, the original TLM code is essentially a series of
nested for-next loops. The complexity of adapting the original
TLM program to the NVIDIA GPU architecture requires
stream computing based parallel algorithms to be
implemented. Novel strategies are necessary in cases that
exhibit cross block synchronization dependencies, as seen in
the example of the ‘radiative node method’.

It is found that for two-dimensional shunt node TLM, our
new GPU based algorithm can deliver up to 210 million nodes
per second of simulation speed with just a single GPU. This is
a significant increase in performance that warrants further
research and development in computational electromagnetics
procedures for this hardware platform. In particular, the
innovative procedure described in this paper could be adopted
in order to port three-dimensional FDTD and TLM algorithms
to the NVIDIA GPU environment.

ACKNOWLEDGEMENT

The authors wish to acknowledge the financial support from
the National Science and Engineering Research Council of
Canada.

REFERENCES

[1] M. Macedonia, "The GPU Enters Computing's
Mainstream", IEEE Computer, vol. 36, issue 10, pp.106 –
 108, October 2003.

[2] G. Shen, G. P. Gao, S. Li, H. Y. Shum and Y. Q. Zhang,
"Accelerating Video Decoding Using GPU", IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 15, issue 5, pp. 685 – 693, May 2005.

[3] J.Y. Hong and M.D. Wang, "High speed processing of
biomedical images using programmable GPU",
International Conference on Image Processing, vol. 4,
pp. 2455 – 2458, vol. 4. October 24 – 27, 2004.

[4] Y. Heng and L. Gu, "GPU-based Volume Rendering for
Medical Image Visualization", 27th Annual International
Conference on Engineering in Medicine and Biology,
pp. 5145 – 5148, 2005.

[5] O. Fialka and M. Cadik, "FFT and Convolution
Performance in Image Filtering on GPU", IEEE
Proceedings of the Information Visualization, pp. 609 –
 614, July 05-07, 2006.

[6] J.S. Meredith, S.R. Alam and J.S. Vetter, "Analysis of a
Computational Biology Simulation Technique on
Emerging Processing Architectures", IEEE International
Symposium on Parallel and Distributed Processing,
pp. 1 – 8, March 26-30, 2007.

[7] S.E. Krakiwsky, L.E. Turner and M.M. Okoniewski,
"Graphics Processor Unit Acceleration of Finite-
Difference Time-Domain Algorithm", Proceedings of
IEEE International Symposium on Circuits and Systems,
vol.5, pp. V-265 – V268, May 23-26, 2004.

[8] H. Takizawa, N. Yamada, S. Sakai, and H. Kobayashi,
"Radiative Heat Transfer Simulation Using
Programmable Graphics Hardware", 5th IEEE/ACIS
International Conference on Computer and Information
Science, pp. 29 – 37, July 10-12, 2006.

[9] Z. Luo; H. Liu; X. Wu, "Artificial Neural Network
Computation on Graphic Process Unit", Proceedings of
IEEE International Joint Conference on Neural Networks,
vol. 1, pp. 622 – 626, Jul. 31 to Aug. 4, 2005.

[10] S. Harding, W. Banzhaf, "Fast Genetic Programming and
Artificial Developmental Systems on GPUs", 21st
International Symposium on High Performance
Computing Systems and Applications, pp. 2, May 2007.

[11] F. Zhe, Q. Feng, A. Kaufman and S. Yoakum-Stover,
"GPU Cluster for High Performance Computing",
Proceedings of the ACM/IEEE Conference on
Supercomputing, pp. 47, 2004.

[12] folding.stanford.edu/FAQ-ATI.html

[13] Wolfgang J. R. Hoefer, "The Transmission-Line Matrix
Method — Theory and Applications", IEEE Transactions
on Microwave Theory and Technique, vol. MTT-33.
No. 10, pp.882-893, October 1985.

[14] NVIDIA, developer.nvidia.com/object/cuda.html.

[15] Faustus Scientific Corporation, www.faustcorp.com.

[16] P. B. Johns, “A symmetrical condensed node for the TLM
method,” IEEE Transactions on Microwave Theory and
Technique, vol-35, no. 4, pp. 370–377, April 1987.

[17] www.yatpac.org

Filter: Node Capacity Performance

14.6

53.4

153.9

9.8

33.2

-

20

40

60

80

100

120

140

160

180

M
eg

a-
N

od
es

/s
MEFiSTo (1 CPU) MEFiSTo (4 CPUs)
Serial TLM (1-CPU) OpenMP TLM (4-CPUs)
CUDA (GPU)

978-1-4244-1780-3/08/$25.00 © 2008 IEEE 156
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 22, 2009 at 15:20 from IEEE Xplore. Restrictions apply.

