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Abstract  —  Recent advances in computing technology has 

brought massively parallel computing power to desktop PCs. As 
multi-core processor technology becomes mature, a new front in 
parallel technology based on graphics processors has emerged. A 
massively parallel 2D-TLM algorithm for NVIDIA advanced 
graphics processors has been developed. The proposed parallel 
computing paradigm can be adopted straightforwardly to accelerate 
time-domain electromagnetic field modeling programs.  

Index Terms — Time Domain Computational Electromagnetics, 
Parallel Algorithms, Stream Computing, FDTD, TLM, GPU, SIMD. 

I. INTRODUCTION 

Graphics processing unit (GPU) based parallel computing has 
been an important topic for the computing industry for a 
number of years. Macedonia addressed this topic in a 
computing magazine article in 2003 [1].  Most of the papers 
on GPU computing are related to signal and image processing 
[2 – 6]. Krakiwsky et al. applied the technique to accelerate 
the FDTD algorithm [7]. Takizawa et al. applied GPU 
computing to heat transfer simulation [8]. Z. Luo et al. and 
Harding et al. applied the paradigm to artificial neural network 
[9] and genetic algorithm [10], respectively.  Hence, it is quite 
clear that parallel algorithms can be executed efficiently on 
GPUs. Furthermore, a cluster of GPU based computers can be 
created to execute grand challenge problems [11]. Researchers 
at Stanford [12] have been using this technique for years in 
protein folding computation.  However, general adaptation of 
GPU processing for scientific computing, and hence in 
computational electromagnetics as well, has been quite slow 
due to the lack of a good software development library. 

II. THE GRAPHICS PROCESSING UNIT (GPU) 

The latest GPUs from NVIDIA are based on an innovative 
compute unified device architecture (CUDA) interface. The 
CUDA SDK enables programs to be developed with the 
SIMD paradigm using a high level programming language 
such as C or C++. The NVIDIA GeForce 8800 GTX GPU 
used in this project consists of 16 multiprocessors with 8 
processors each for a total of 128 processors with 768 MB of 
GDDR3 global memory.  Each multiprocessor contains 16k of 
on-chip shared memory which is much faster than global 
memory. There is 64k of constant cache which is used to pass 
instruction parameters. The single instruction multiple data 
(SIMD) programming model supported by the GPU is a very 
good software paradigm for implementing parallel FDTD and 
TLM algorithms. 

III. MASSIVELY PARALLEL TLM ALGORITHM 

This paper reports, for the first time, a massively parallel 
GPU based TLM algorithm for NVIDIA CUDA enabled 
GPUs.  With even an entry-level GeForce 8800 GTX Ultra, 
the new program has achieved more than 10 times 
acceleration in speed when compare to an equivalent serial 
version running on a top-end DELL 690 workstation. 

Fig. 1 depicts the schematic of our implementation. A TLM 
mesh, [13], on the host CPU is mapped to the GPU memory 
according to the CUDA SDK requirement, [14]. The CPU 
transfers its mesh data to the GPU global memory where a 
kernel function is executed in parallel on all 16 
multiprocessors. The 16 multiprocessors partitions and 
transfers data from the global memory to their local shared 
memory before processing the TLM procedures in parallel, 
fig. 2a. It is important to note that the copy and write 
commands for transferring data between global and shared 
memory take more than 90 percent of time per kernel 
iteration. This is due to the fact that 400 – 600 clock cycles are 
needed for each read or write operation for accessing the 
global memory; this is very slow when compare to as low as 4 
clock cycles for accessing on-chip memory. Hence, it is 
important to eliminate unnecessary data transfer between the 
two memory locations. 

Thread synchronization is an important issue for SIMD 
programming. Fig. 2a depicts three fundamental operations of 
a TLM process, namely impulse scattering at nodes, impulse 
reflection at boundaries, and impulse interchanges among 
neighboring nodes. Within each multiprocessor, these three 
operations can be synchronized easily by calling a sync 
function at the end of each operation.  Synchronization among 
multiprocessors (thread blocks), on the other hand, must be 
handled indirectly by algorithm specific logic. Fig. 3 depicts a 
solution that has been implemented. Initially, a block of 16×16 
nodes is copied from the global memory to the on-chip shared 
memory labeled VS_1. Next scattering is executed on all 256 
(or 16×16) nodes in VS_1 by the thread block. The results of 
scattering remain in VS_1. Impulse interchange is processed 
next and the result is store in VS_2. Boundary conditions are 
handled in a similar manner. Note that in fig. 3 shared 
memory, VS_2, is larger than VS_1 by one dimension in all 
directions to accommodate the voltage data that crosses 
boundaries. The footprint of writing the results of VS_2 to  
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Fig. 1 The host-device relationship between a computer's CPU and 

GPU.  Also depicted is the memory model of the NVIDIA 
GeForce 8800 GTX Ultra GPU used in this project. 

 

 
Fig. 2 a) Synchronization of computation stages within a 

thread block can be handled directly by a GPU sync 
function. b) Synchronization among thread blocks must 
be handled by other means. 

 
 
Fig. 3 Parallel computational iteration by thread block. 

 

 
Fig. 4, Process of Inter-block dependence immunity 
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global memory is depicted in fig. 4. Only the voltage arms in 
blue are written to global memory. Note that the voltage arms 
that are just inside the boundaries of the block (grey) are not 
written to global memory to allow interlacing. One important 
advantage seen by this technique is that all blocks in a mesh 
self-stitch, fig. 4. The overhead of this self-stitching ‘radiative 
node method’ is light compared to post kernel stitching 
approaches.  

IV. RESULTS 

The performance of the TLM GPU routine was measured by 
timing the execution of increasingly larger mesh-node arrays 
(figure 5).  As a comparison the same measurements were 
made for a serial CPU TLM routine and an OpenMP version 
that utilized 4 CPUs.  The results in figure 5 indicate that at a 
lower number of nodes the performance of the parallel code 
diminishes; this can be attributed to factors such as high 
overhead-to-data density ratio for small mesh sizes.  The 
GPU, therefore, offers no benefit when the mesh is smaller 
than a certain threshold.  In this situation, the overhead in 
invoking the GPU code is high enough to render the GPU 
inefficient compared to the CPU.  

As a second validation, the GPU-TLM code was used to 
model a WR28 waveguide band-pass filter. The field 
distribution, return loss and insertion loss of the filter are 
shown in fig. 6. The filter was also implemented in an 
OpenMP version of TLM code, and in MEFiSTo 2-D, [15]. 
Figure 7 shows a comparison of the performance results of 
each simulation run for this filter. MEFiSTo was configured to 
run using a single CPU as well as all 4 available CPUs on the 
Dell 690 workstation.  

Our first attempt to port the two-dimensional shunt TLM 
algorithm to the GPU environment was very successful. It was 
recognized, however, that further improvements to speed of 
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Fig. 5 Performance comparison between the traditional CPU 

and GPU TLM algorithms. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The field distribution, return loss and insertion loss of a 
bandpass filter in a WR28 waveguide. The dimensions 
of the inductive obstacles are 0.6465mm × 0.6465mm 
and 0.6465mm × 1.9340mm. The spacing between the 
obstacles are 5.172mm. 

 
execution can be achieved by applying additional optimization 
techniques, particularly contiguous memory organization.     
We will employ the techniques learned during this project to 
port the SCN TLM engine in Yatsim, [16, 17], to the NVIDIA 
GPU platform as soon as possible. 

V. CONCLUSIONS 

We have successfully designed and implemented a 
massively parallel 2D-TLM algorithm for the NIVIDIA 
CUDA enabled GPU. It is found that the SIMD software 
paradigm is very suitable for implementing time-domain 
computational electromagnetic methods such as TLM and 
FDTD. Our initial implementation has achieved more than 10 
times improvement in speed. 
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Fig. 7 Performance of various TLM implementations for a 

bandpass filter in a WR28 waveguide.   

Structurally, the original TLM code is essentially a series of 
nested for-next loops. The complexity of adapting the original 
TLM program to the NVIDIA GPU architecture requires 
stream computing based parallel algorithms to be 
implemented. Novel strategies are necessary in cases that 
exhibit cross block synchronization dependencies, as seen in 
the example of the ‘radiative node method’.   

It is found that for two-dimensional shunt node TLM, our 
new GPU based algorithm can deliver up to 210 million nodes 
per second of simulation speed with just a single GPU. This is 
a significant increase in performance that warrants further 
research and development in computational electromagnetics 
procedures for this hardware platform. In particular, the 
innovative procedure described in this paper could be adopted 
in order to port three-dimensional FDTD and TLM algorithms 
to the NVIDIA GPU environment. 
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